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 Abstract  

 Multivariate statistical process control (MSPC) is one of the fastest developing 

and the most important issue in statistical process control (SPC).  One of the 

aims of the MSPC approaches is the detection of the variable(s) which causes 

any signal in the process. In this paper, we presented a multivariate statistical 

process monitoring tool based on independent component analysis (ICA), 

which can detect signal variable(s) more useful and uncomplicated than the 

conventional methods. The proposed monitoring method utilizes a univariate 

statistical process control (USPC) chart based on ICA for signal identification. 

The basic idea of our approach is to improve the monitoring performance by 

detecting the source(s) of signal(s). The simulation results clearly show that the 

proposed IC-USPC method is more practical and feasible alternative to the 

other methods available in the literature. 
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1. Introduction  

There may be many situations that require the monitoring or control of two or more quality 

characteristics simultaneously. Process monitoring problems involving two or more variables 

are generally known as Multivariate Statistical Process Control (MSPC). MSPC methods have 

been widely used in process control to detect signal(s) of a process. However, the 

functionality of the performances of these methods is limited due to some assumptions that 

independency of variables and that normality of variables. For example, they can not provide 

any information about the variable(s) causing these signals.  

Nowadays, in industry, there are many situations in which the simultaneous monitoring or 

control, of two or more related quality – process characteristics is necessary. Process 

monitoring problems in which several related variables are of interest are collectively known 

as MSPC. 

There are various extensions of MSPC in the literature. Some of those, multiway PCA-PLS 

for monitoring batch process (Wold et al., 1987), multiblock PCA-PLS for monitoring very 

large processes (MacGregor et al., 1994), dynamic PCA for including process dynamics in a 

PCA model (Ku et al., 1995), multiscale PCA based on wavelet analysis for monitoring 

signals at several different frequency ranges (Bakshi, 1998), model-based PCA for integrating 

a process model with PCA (Rotem et al., 2000), moving PCA that monitors change in 

directions of principal components (Kano et al., 2002). Also, Kosanovich and Piovoso (1997) 

suggest that the observed data can be de-noised by filters to improve the performance of 

process monitoring, and Chen et al. (2003) presented a new MSPC method based on blind 

source analysis and wavelet transform.  

As Jackson (1991) states that, any multivariate quality control procedure should fulfill four 

conditions: 

 

(i) The single answer to the question „Is the process in control?‟ 

(ii) Specification of an overall Type I error 

(iii)The relationship among the variables must be taken into account  

(iv) Procedures should be available to answer the question „If the process is out of control, 

what is the problem?‟ 

 

The last question has proven to be an interesting issue for many researchers. For example, Alt 

(1985) developed an elliptical control region. However, this approach can be applied to only 

two quality characteristics. The best well-known technique in this subject is the MYT 

Decomposition proposed by Mason, Tracy, and Young (1997). MYT decomposition separates 

a    value into two orthogonal components. One of them is called an unconditional 

component, which is used to control whether an individual variable is out-of-control. The 

second one is referred to as a conditional component, is used to determine if an observation 

vector generating a signal supplies the linear relationships between the variables. Jackson 

(1991) supposed that when the variables are transformed to be uncorrelated principal 

components, they might ensure some intuition about the structure of the out-of-control 

process so that certain original observations can be examined. Nevertheless, when the number 

of observed variables increases, these traditional methods require more computations and 

more detailed separation procedure. Therefore, more feasible methods should be developed to 

overcome this complexity. 
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2. METHOD 

This study uses ICA to detect variable(s) that caused any signal(s) in a multivariate process. 

There are some applications of using ICA in-process monitoring. For example, Kano et al. 

(2003) proposed a new SPC method based on ICA and they have demonstrated the idea of 

monitoring based on the independent components (ICs) instead of the observed data. The 

utilization of kernel density estimation to define the control limits of ICs that do not satisfy 

Gaussian distribution is investigated by Lee et al. (2003). Also, Lee et al. (2004) extended 

their original method to multi-way ICA that to monitor the batch processes which combine 

ICA and kernel estimation. 

However, there is a gap abandon by these studies in practice. This gap is about determining 

which quality variable(s) that cause the generation of the signal. In the present work, a new 

approach called IC-USPC is proposed to handle this problem. The Hotelling    chart does not 

provide information about the source of the out-of-control signal. Looking at the individual 

control charts of the observed variables can be misleading due to the dependency between the 

variables. The main advantage of the proposed approach is that converting the observed 

variables into ICs and monitor the individual USPC charts of the ICs. For this purpose, the 

performance of the IC-USPC is evaluated and compared with conventional MYT 

decomposition findings. Simulation results have shown that IC-USPC can achieve the same 

results with MYT decomposition more easily and practically in terms of computation. 

 

2.1. MYT Decomposition 

The MYT decomposition is defined as the separation of    value into independent and 

orthogonal components. The decomposed components are divided into two types that 

conditional component and unconditional component. A possible    decomposition can be 

shown as in the following equation: 

 

     
      

       
             

  (1) 

          

where unconditional terms are represented by   
 , while conditional terms are indicated by 

         
 . The    value is the statistical distance from the observed data vector to the mean 

vector. Although the same    value is obtained for each sequence derived for the components 

of the vector X, they differ in the decomposition of this value into   independent terms. Since 

the MYT decomposition of    requires   terms for decomposition in each division, ,      
possible terms are generated with together    possible division (Mason and Young, 2002). 

The unconditional components in any decomposition are calculated as in (2): 

 

  
  

(    ̅ )
 

  
  

(2) 

 

where    is the  th component of the observed vector,  ̅  and   
  mean and variance of this 

component, respectively. Similarly, the conditional components can be obtained as follows: 

 

            
  

(    ̅           )
 

            
                

(3) 
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Detection of variable(s) contributing to the signal is possible by comparing each term of the 

MYT decomposition of the signal value with its critical value. When it is assumed that the 

sample size is   and the number of variables is  , the critical value of the unconditional terms 

and conditional terms are (
   

 
)              and *

           

      
+             , respectively. 

 

2.2. Independent Component Analysis  

ICA (Jutten and Herault, 1991; Girolami, 1999) is a signal processing technique for 

transforming observed multivariate data into statistically independent components, which are 

expressed as linear combinations of observed variables. ICA is a powerful and useful 

statistical tool for extracting independent sources given only observed data that are mixtures 

of unknown sources. The implementation of ICA in extracting the characteristic signals is 

based on the difference of higher-order statistical characteristics. Several applications of ICA 

have been reported in speech processing, biomedical signal processing, machine vibration 

analysis, nuclear magnetic resonance spectrocopy, infrared optical source separation, radio 

communications, and so on (Girolami, 1999). 

The limitations of ICA are: (1) only non-Gaussian ICs can be estimated (just one of them can 

be Gaussian); and (2) neither signs, powers, nor orders of ICs can be estimated (Kano et al., 

2003).  

In the ICA algorithm, it is assumed that p observed variables            are expressed as 

linear combinations of m (≤ p) unknown ICs             . The observed variables and the 

ICs have zero mean. The relation between the observed data and the independent component 

matrices is given as in (4), 

 

     (4) 

 

where   [          ]
 
,   [          ] , and        is an unknown mixing matrix. 

When n samples are considered, the above equation can be rewritten as: 

 

     (5) 

         

where        is the observed-variable data matrix and        is the independent-

component data matrix. The main idea of ICA is to estimate both mixing matrix   and the 

independent component matrix S from only the information of the observed data matrix X. 

The practical problem of ICA is to calculate a separating matrix         so that 

components of the estimated independent-component data matrix  ̂ is obtained as follows: 

 

 ̂     (6) 

 

It must be said that the ICs must be become as independent of each other as possible. 

 

3. THE SIMULATED EXAMPLE 

 

3.1.Problem Definition 

This study considers a simulated example to demonstrate the use of our proposed approach. In 

our simulation, we assume that a multivariate process is initially in control, and the sample 

observations come from a multivariate normal distribution with known mean vector    and 
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covariance matrix   . This study applies the Hotelling    control chart to monitor a 

multivariate process with  two quality characteristics. We consider the types of correlation,  , 

between two quality variables as no correlation (i.e.,    ), moderate correlation (i.e., 

     ), and high correlation (i.e.,      ). Since the process has 2 quality characteristics 

(i.e.,    ), the possible sets of quality variables at signal would be        . In our 

study, we use the following notations:              and       to represent the 3 possible sets, 

in which “0” stands for the “in-control” state and “1” stands for the “out-of-control” state. The 

meaning of        stands for the first quality variable      that is at fault while the second 

quality variable      is not at fault. 

For mathematical convenience, we assume that each quality variable for an in-control process 

follows a normal distribution with zero mean and one standard deviation. Also, we assume 

that the out-of-control process follows a normal distribution with mean of one and one 

standard deviation. The data are structured only as individual observations. Under these 

conditions, the Hotelling    statistics are computed as follows: 

 

  
       ̅          ̅                                                                                                     (7) 

 

where  ̅  
 

 
∑   

 
    and   

 

   
∑ (    ̅)(    ̅)

  
    are estimated mean and variance-

covariance matrix, respectively. 

In the literature, generally, the use of multivariate control charts are seen as more important 

when data set are correlated, and univariate control charts can be performed as a complement 

to them (Fuchs and Kenett, 1998). However, considering the relationship between variables, 

the use of univariate SPC charts may yield misleading results. Therefore, in this study, it was 

proposed that the USPC chart of independent variables (   and   ) could be used instead of 

the univariate SPC chart of observed variables to detect the signal variable(s). 

This study generates 100 data sets of observations for every possible combination of fault 

sets. Since there are 3 possible sets of quality variables at fault in the case of    , we have 

300 data sets in a simulation run. Those 300 data sets are initially used to serve as the Phase I. 

Another 300 data sets are generated for Phase II. 

Figure 1 shows the 300 data sets of    and    in the cases of    ,      , and      , 

respectively. 
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Figure 1. The 300 data vectors            for 3 combinations of possible fault sets, :               and      , in 

the cases of    ,       , and       . 

 

We also use the same data set to calculate out-of-control Hotelling    statistics which is 

shown in Figure 2. 
 

 
(a) no correlation 

 
(b) moderate correlation 

 
(c) high correlation 

Figure 2. The corresponding Hotelling    statistics for the data sets in Figure 1. 

 

If the study includes all results of 3 types of correlations, it could exceed the scope of a paper. 

Also, as shown in Figure 1 and Figure 2, the out-of-control process is more distinct in the 

highly correlated data set. Therefore, the next part of the study has been limited to the 

findings obtained by using high correlation data set. 

 

Monitoring Results 

The procedure of the proposed IC-USPC scheme is similar to typically USPC. The only 

difference between the schemes is monitored variables and control limits . In the IC-USPC 

chart, ICs are monitored instead of original observed variables. Besides, because of the ICs 
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are non-normal, the control limits of IC-USPC are generated using kernel density estimation, 

unlike conventional USPC. 

To apply the proposed IC-USPC method for determination of signal variable(s), the following 

procedure is implemented: 

(1) One data set, including 100,000 simulated samples, under in-control process condition 

is used to determine control limits. 

(2) A new sample is obtained under the condition of       to demonstrate the example 

more clearly. This new monitoring data set is consisting of 40 samples that have 20 

samples from the in-control and 20 samples from the out-of-control process. 

(3) Observed variables are monitored in USPC. 

(4) Hotelling‟s    analysis is applied for MSPC, and then MYT decomposition outcome 

are obtained. 

(5) Then, the observed variables are transformed into ICs. 

(6) Each IC is independently monitored in the proposed IC-USPC chart. 

(7) IC-USPC chart is compared with MYT decomposition results. 

To understand the need to use ICs instead of observed variables, the independence of both of 

them is shown in Figure 3. Referring to Figure 3, there is a positive correlation between the 

observed variables, whereas there is no correlation between the ICs. Therefore, it would be 

better to monitor uncorrelated ICs instead of correlated observed variables. 

 

 
Figure 3. Independency of observed variables and independent components 

 

Also, as shown in Figure 4, the observed variables follow the normal distribution, whereas the 

ICs are not normally distributed. For this reason, to establish control limits in the proposed 

IC-USPC, the kernel density estimations have been used. 

 
(a) Observed variables 
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(b) Independent components 
Figure 4. Normality plots of (a) observed variables and (b) independent components 

 

Figure 5 shows the individual USPC charts of the observed variables. Accordingly, it can be 

said that the first variable is out of control while the second variable is in-control. However, 

this result will not be very reliable due to the dependency structure between the variables. 

 

 
(a) for     

 
(b) for    

Figure 5. Individual USPC chart for (a)    and (b)    

 

Two process individual variables were used to construct Hotelling‟s     control chart and 

Figure 6 is obtained. It can be confirmed from Figure 6 that the process is out-of-control 

because the statistics    exceeds its control limit. However, the detection of signalling 

(source) variable(s) remains a question to be investigated.  

 

 
Figure 6. Hotelling    Control Chart for observed data (      ) 

 

It is noticed that nineteen points were outside the upper control limit (points 22-40). We will 

use the MYT decomposition method to demonstrate how to identify the variable(s) that cause 

this out of control situation.  

The Table 1 shows the decomposed components of     for the out-of-control process given in 

Figure 6. MYT decomposition is a procedure that considers each out-of-control point, each 

variable and the relationship between the variables. For example, as shown in Table 1,    

decomposition is assesed separately for each observation exceeding the control limit for both 
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variables and the dependence between the variables. This shows that as the sample size and/or 

the number of variables increases, it will be more difficult to work with this method.  

In Table 1, column 1 shows out-of-control points, while column 3 shows the     

decomposition values. In column 2,   
  and   

  represent unconditional components while     
  

represents conditional component. UCL values in column 4 are critical values for the 

corresponding    components. When the number of the quality characteristics is    , the 

sample size is      and %99 confidence level (        ) are considered, the critical 

value for the unconditional components (  
  and   

 ) is calculated as (
    

  
)             

       and the critical value for the conditional component (    
 ) is calculated as 

             

        
                    . If the    decomposition value is greater than the 

corresponding critical value, it is said that the variable(s) that contribute to this out of control 

situation. For example, for point 22, since   
                     and     

  
                   , it can be interpreted as both the first variable and the 

dependency between the first and second variables cause the out of control situation at this 

point. The variable(s) that causes the process which is in out-of-control are shown as bold in 

Table 1.  Examining the results of     decomposition, mostly, it is seen that the out of control 

state is not only caused by the first variable but also by the dependency structure between the 

first and second variables.  

 
Table 1. MYT Decomposition results 
Out-of-

control 

points 

   

comp. 

   

decomp. 
UCL 

p-

value 
1 2 

 Out-of-

control 

points 

   

comp. 

   

decomp. 
UCL 

p-

value 
1 2 

22 

  
  21.6705 7.5161 0.0000 1 0  

32 

  
  32.9524 7.5161 0.0000 1 0 

  
  3.5757 7.5161 0.0661 2 0    

  5.1071 7.5161 0.0295 2 0 

    
  49.4811 10.9641 0.0000 1 2      

  77.4136 10.9641 0.0000 1 2 

23 

  
  16.4458 7.5161 0.0002 1 0  

33 

  
  18.8263 7.5161 0.0001 1 0 

  
  0.9361 7.5161 0.3393 2 0    

  1.1741 7.5161 0.2852 2 0 

    
  54.3541 10.9641 0.0000 1 2      

  60.7250 10.9641 0.0000 1 2 

24 

  
  15.5522 7.5161 0.0003 1 0  

34 

  
  13.5971 7.5161 0.0007 1 0 

  
  0.0019 7.5161 0.9651 2 0    

  0.9384 7.5161 0.3387 2 0 

    
  80.2190 10.9641 0.0000 1 2      

  42.6625 10.9641 0.0000 1 2 

25 

  
  12.2808 7.5161 0.0012 1 0  

35 

  
  10.8469 7.5161 0.0021 1 0 

  
  0.0548 7.5161 0.8161 2 0    

  0.1511 7.5161 0.6996 2 0 

    
  57.1527 10.9641 0.0000 1 2      

  45.7566 10.9641 0.0000 1 2 

26 

  
  5.1714 7.5161 0.0285 1 0  

36 

  
  3.2249 7.5161 0.0803 1 0 

  
  1.0325 7.5161 0.3158 2 0    

  2.9211 7.5161 0.0954 2 0 

    
  54.5432 10.9641 0.0000 1 2      

  61.4244 10.9641 0.0000 1 2 

27 

  
  8.3369 7.5161 0.0063 1 0  

37 

  
  15.1652 7.5161 0.0004 1 0 

  
  0.0154 7.5161 0.9018 2 0    

  1.5386 7.5161 0.2222 2 0 

    
  40.5609 10.9641 0.0000 1 2      

  42.1530 10.9641 0.0000 1 2 

28 

  
  5.9303 7.5161 0.0196 1 0  

38 

  
  6.0624 7.5161 0.0183 1 0 

  
  0.0047 7.5161 0.9458 2 0    

  0.0119 7.5161 0.9136 2 0 

    
  29.6575 10.9641 0.0000 1 2      

  34.5176 10.9641 0.0000 1 2 

29 

  
  15.9412 7.5161 0.0003 1 0  

39 

  
  16.3755 7.5161 0.0002 1 0 

  
  0.8884 7.5161 0.3517 2 0    

  0.2883 7.5161 0.5944 2 0 

    
  52.9245 10.9641 0.0000 1 2      

  67.1198 10.9641 0.0000 1 2 

30 

  
  39.1357 7.5161 0.0000 1 0  

40 

  
  9.8531 7.5161 0.0032 1 0 

  
  7.3059 7.5161 0.0101 2 0    

  0.0697 7.5161 0.7932 2 0 

    
  84.2371 10.9641 0.0000 1 2      

  44.3743 10.9641 0.0000 1 2 

31 

  
  7.2502 7.5161 0.0104 1 0  

 

      

  
  0.0501 7.5161 0.8241 2 0        

    
  44.1305 10.9641 0.0000 1 2        

 

The USPC charts of the ICs are presented in Figure 7. As shown in Figure 7, both 

independent variables exceed control limits. Thus, the hidden information about the out-of-
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control state that cannot be observed in the USPC charts of the second variable has been 

revealed with ICs. Also, although the    values corresponding to the 26, 28 and 31 

observations were not observed as out-of-control according to the MYT decomposition, it can 

be seen that the ICs corresponding to these observations exceeded the control limits in the 

USPC for   . Thus, it can be concluded that IC-USPC has reached hidden information that 

cannot be obtained by conventional methods. 

 
 

 
(a) for     

 
(b) for    

Figure 7. Individual USPC chart for independent components (a)    and (b)    

 

 
4. CONCLUSION  

The main purpose of the present work is that the process monitoring performance can be 

improved by determining signal variables by using ICA. To expose the applicability of the 

proposed IC-USPC method, its signal variable detection performance is evaluated and 

compared with the conventional USPC  ̅-chart and the MYT decomposition. The simulated 

results show that IC-USPC can detect the signal variable(s) more functional and more 

accurate than the others.  

As a result, the proposed IC-USPC chart is more advantageous than the conventional USPC 

 ̅-chart and MYT decomposition methods. It can be said that the IC-USPC chart, which has 

more reliable results than USPC  ̅-charts, is more practical than MYT decomposition.  

IC-USPC is still under development. For example, to make the proposed method more 

applicable, a multivariate process with 3 or more quality characteristics can be discussed in 

future research. Since the signal variable(s) can be monitored, the IC-USPC has the potential 

for signal identification. As the requirements for process monitoring increase, there would be 

a greater need for the SPC to develop methods that can include the detection of the signal and 

the detection of the source of the signal. Therefore, the IC-USPC is a promising approach and 

further efforts are needed in this issue. 
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